- Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. & Adam, G. (1985). Z. Chem. 25, 183-184.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996). XSCANS. X-ray Single Crystal Analysis Software. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

Acta Cryst. (1999). C55, 601-603

(25*R*)-6 β -Acetoxy-3 β -bromo-5 α -spirostan-23-one

HÉCTOR NOVOA DE ARMAS,^{*a*†} NORBERT M. BLATON,^{*b*} OSWALD M. PEETERS,^{*b*} CAMIEL J. DE RANTER,^{*b*} RAMÓN POMÉS HERNÁNDEZ,^{*c*} MARTÍN A. IGLESIAS ARTEAGAS,^{*d*} ROXANA PÉREZ GIL^{*d*} AND FRANCISCO COLL MANCHADO^{*d*}

^aCentro de Química Farmacéutica, Departamento de Análisis, Apartado 16042, La Habana, Cuba, ^bLaboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, ^cCentro Nacional de Investigaciones Científicas, Divisíon de Química, Apartado 6990, La Habana, Cuba, and ^dLaboratorio de Productos Naturales, Facultad de Química, Universidad de La Habana, Apartado 10400, La Habana, Cuba, E-mail: hector.novoa@farm.kuleuven.ac.be

(Received 21 September 1998; accepted 3 December 1998)

Abstract

In the title compound [systematic name: $(25R)-3\beta$ bromo-23-oxo-5 α -spirostan-6-yl acetate, C₂₉H₄₃BrO₅], the C3—Br bond is oriented equatorially and (–)antiperiplanar with respect to the C4—C5 bond. The sixmembered *B*, *C* and *F* rings have chair conformations, as is usual in this type of compound. The five-membered *D* ring adopts a 14 α -envelope conformation and the *E* ring adopts a C22 β ,O3 α -half-chair conformation. The *A/B*, *B/C* and *C/D* ring junctions are *trans*.

Comment

In connection with our studies on the synthesis and characterization of bioactive steroids, we need, for reference purposes, the detailed molecular geometry of (25R)- 6β -acetoxy- 3β -bromo- 5α -spirostan-23-one, (I), which is being used extensively as a starting material for the synthesis of different spirostanic analogues of brasinosteroids. The title compound was obtained by treatment of an acetic acid solution of the previously reported steroid (25R)- 5α -spirostan- 2α , 3α , 6β -triol triacetate (Iglesias-Arteaga *et al.*, 1998).

The absolute configuration, determined from refinement of the Flack (1983) parameter in the X-ray analysis, confirmed that predicted beforehand from the synthesis route. The molecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1. The C3-Br bond is oriented equatorially and (-)-antiperiplanar with respect to the C4-C5 bond. The presence of the Br atom does not disturb the chair conformation in ring A of the steroidal nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters below 2.70 (9)° (Duax et al., 1976). Mirror symmetry is dominant, with asymmetry parameters $\Delta C_{\rm S}({\rm C3}) = 0.6(7), \ \Delta C_{\rm S}({\rm C5}) = 1.2(8)$ and ΔC_2 (C4-C5) = 2.70 (9)°. The average of the torsion angles is 56.50 (9)°. Rings B, C and F have chair conformations, as expected (Pfeiffer et al., 1985). Ring D has a 14 α -envelope conformation (Altona et al., 1968). Ring E has a C22 β ,O3 α -half-chair conformation. The A/B, B/C and C/D ring junctions are trans. Bond distances and valence angles are close to expected values (Honda et al., 1996). The packing of the molecules is assumed to be dictated by van der Waals interactions and by intramolecular and intermolecular C-H-O hydrogen bonds (Taylor & Kennard, 1982).

Fig. 1. Plot showing the atomic numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms and H atoms have been omitted for clarity.

[†] Present address: Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium.

Experimental

The title compound was synthesized from an acetic acid solution of (25R)-5 α -spirostan-2 α , 3 α , 6 β -triol triacetate with boron trifluoride ethyl etherate and sodium nitrite, followed by chromatography on alumina. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate-hexane solution (1:1).

Crystal data

```
C<sub>29</sub>H<sub>43</sub>BrO<sub>5</sub>
                                            Cu K\alpha radiation
M_r = 551.54
                                            \lambda = 1.54178 \text{ Å}
Orthorhombic
                                            Cell parameters from 46
P2_{1}2_{1}2_{1}
                                               reflections
a = 9.2654(12) Å
                                            \theta = 6.45 - 55.80^{\circ}
b = 10.6629 (14) \text{ Å}
                                            \mu = 2.332 \text{ mm}^{-1}
c = 27.703 (4) \text{ Å}
                                            T = 293 (2) \text{ K}
V = 2737.0 (6) Å<sup>3</sup>
                                            Prism
                                            0.40 \times 0.26 \times 0.14 mm
Z = 4
D_x = 1.339 \text{ Mg m}^{-3}
                                            Colourless
D_m not measured
```

every 100 reflections

intensity decay: <1.0%

0

Data collection

Siemens P4 four-circle	2651 reflections with
diffractometer	$F > 2\sigma(F)$
$2\theta/\omega$ scans	$R_{\rm int} = 0.037$
Absorption correction:	$\theta_{\rm max} = 69.17^{\circ}$
ψ scan (North <i>et al.</i> ,	$h = -1 \rightarrow 9$
1968)	$k = -1 \rightarrow 12$
$T_{\rm min} = 0.389, T_{\rm max} = 0.721$	$l = -1 \rightarrow 33$
3629 measured reflections	3 standard reflections
3200 independent reflections	every 100 reflection
(plus 210 Friedel-related	intensity decay: <
reflections)	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max}$ = 0.457 e Å ⁻³
R(F) = 0.061	$\Delta \rho_{\rm min} = -0.756 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.142$	Extinction correction:
S = 1.097	SHELXL97 (Sheldrick,
3410 reflections	1997a)
322 parameters	Extinction coefficient:
H-atom parameters	0.0030 (3)
constrained	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2]$	International Tables for
+ 5.3297 <i>P</i>]	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure:
$(\Delta/\sigma)_{\rm max} < 0.001$	Flack (1983)
	Flack parameter = $-0.05(5)$

Table 1. Selected	l geometric	parameters	(A,	°)	ł
-------------------	-------------	------------	-----	----	---

Br—C3 O1—C6 O1—C28 O2—C28 O3—C16	1.972 (8) 1.464 (9) 1.345 (7) 1.192 (10) 1.445 (8)	03—C22 04—C22 04—C26 05—C23	1.420 (7) 1.441 (8) 1.442 (9) 1.225 (9)
C6O1C28	118.2 (6)	O3—C22—C20	106.1 (5)
C16-03C22	105.3 (5)	O3C22C23	107.2 (5)
C22	112.8 (5)	O4—C22—C20	106.8 (5)
BrC3C2	109.0 (5)	O4-C22-C23	109.4 (5)
BrC3C4	109.8 (5)	O5-C23-C22	119.9 (7)
O1C6C5	110.6 (6)	O5C23C24	122.7 (7)
01C6C7	107.6 (5)	O4—C26—C25	111.4 (6)

O3-C16-C15	114.8 (5)	O1C28O2	124.6 (7)
O3C16C17	105.5 (5)	O1C28C29	110.9 (7)
O3C22O4	109.7 (6)	O2C28C29	124.5 (6)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	HA	$D \cdots A$	DH···A
C1—H1 <i>B</i> ···O5'	0.97	2.57	3.405 (9)	145
C6—H6· · · O2	0.98	2.34	2.731 (8)	103
C15—H15B· · · O5 ⁿ	0.97	2.59	3.529 (9)	163
C19—H19B···O1	0.96	2.53	2.972 (8)	108
C20—H20· · · O5	0.98	2.50	2.846 (9)	100
C26—H26B···O3	0.97	2.48	2.839 (9)	102
Symmetry codes: (i)	$2 - x, y - \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2} - z;$ (ii)	$1 - x, y - \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}-z.$

The title structure was solved by direct methods and Fourier synthesis. Non-H atoms were refined anisotropically by fullmatrix least-squares techniques. H atoms were calculated geometrically and included in the refinement, but were restrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed at $1.3U_{eq}$ of their parent atoms.

Data collection: XSCANS (Siemens, 1996). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: DIAMOND (Bergerhoff, 1996). Software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991)

This work was supported in part by the project 'Development of human resources and modern techniques for drug analysis in Cuba' (3M980032) from the Belgian Government (ABOS-AGCD) and by K. U. Leuven.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1383). Services for accessing these data are described at the back of the journal.

References

- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32. Bergerhoff, G. (1996). DIAMOND. Visual Crystal Structure Information System. University of Bonn, Germany.
- Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-283. New York: John Wiley.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Honda, T., Fuiji, I., Hiramaya, N., Ishikawa, D., Kawagishi, H., Song, K. & Yoo, I. (1996). Acta Cryst. C52, 1550-1552.
- Iglesias-Arteaga, M. A., Pérez-Gil, R., Leliebre-Lara, V., Pérez Martínez, C. S., Rosado, A. & Coll-Manchado, F. (1998). Synth. Commun. 28, 75-81.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nardelli, M. (1991). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. & Adam, G. (1985). Z. Chem. 25, 183-184.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Siemens (1996). XSCANS. X-ray Single Crystal Analysis Software. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

Acta Cryst. (1999). C55, 603-604

N^6 -Anisoyladenosine monohydrate

S. KOLAPPAN AND T. P. SESHADRI

Department of Physics, Indian Institute of Science, Bangalore 560 012, India. E-mail: seshadri@physics.iisc.ernet.in

(Received 28 May 1998; accepted 19 November 1998)

Abstract

The title compound, $C_{18}H_{19}N_5O_6 H_2O$, has a syn conformation about the glycosidic bond. Its furanose ring shows a C2'-endo-C3'-exo twist conformation and trans-gauche geometry about the C4'-C5' bond. The angle between the adenine base and the phenyl ring of the anisoyl group is 22.9°. Adenine and anisoyl groups stack along the b axis at a separation of 3.4 Å.

Comment

The investigation of the title compound, (I), was carried out to study the effect of modifications of the base on

Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids.

M3

C1

C15

O10

C10

CL

C12

017

(I)